Characteristic Study of Bio-Membrane PEM Fuel Cell for Performance Upgrading

نویسنده

  • Abdullah A. Alshorman
چکیده

Polymer electrode membrane (PEM) fuel cell has been intensively investigated to improve its output power as a new alternative energy resource. One vital part of PEM fuel cell is its membrane and its critical role in power production of fuel cell. Specifically, the thermal, hydrodynamic and ionic properties of membrane form the core mechanisms of energy generation inside PEM fuel cell. In this simulation study a new design for PEM fuel cell (PEMFC) membrane is suggested based on mechanical and rheological properties of biological cellular membrane using mathematical-computerized modeling approach for total PEM fuel cell that had been built exclusively for the present study. By using biomembrane, the output power of the PEM fuel cell in increased by 33% for the effective range of current density (i.e, 0.4 to 1.2 A/cm2), while the electrical efficiency is improved by 13%20% for the same current density range. Furthermore, for the same hydrogen pressure the output power of biomembrane fuel cell exceeded the power of conventional one by 17% and its electrical efficiency has the same percentage of growth (i.e 17%). © 2016 Alshorman A A. Published by Elsevier B.V. Peer-review under responsibility of the Conference Program Chairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study on the performance prediction of a proton exchange membrane (PEM) fuel cell

An electrochemical analysis on a single channel PEM fuel cell was carried out by Computational Fuel Cell Dynamics (CFCD). The objective was to assess the latest developments regarding the effects of change in the current collector materials, porosity of electrodes and gas diffusion layer on the fuel cell power density. Graphite, as the most applicable current collector material, was applied fol...

متن کامل

Parametric study of the influence of cooling channel dimensions on PEM fuel cell thermal performance

In a polymer membrane fuel cell more than half of the chemical energy of hydrogen is converted to heat during generation of electricity. This causes an increase in the cell temperature. The Cooling field design has a significant role in cell cooling. The cell's performance and stability are reduced due to inappropriate heat dissipation. In this paper, the cooling flow and heat transfer in cooli...

متن کامل

A New Maximum Power Point Tracking Method for PEM Fuel Cells Based On Water Cycle Algorithm

Maximum Power Point (MPP) tracker has an important role in the performance of fuel cell (FC) systems improvement. Tow parameters which have effect on the Fuel cell output power are temperature and membrane water. So contents make the MPP change by with variations in each parameter. In this paper, a new maximum power point tracking (MPPT) method for Proton Exchange Membrane (PEM) fuel cell is pr...

متن کامل

Effect of CO in the reformatted fuel on the performance of Polymer Electrolyte Membrane (PEM) fuel cell

There are several obstacles to the commercialization of PEM fuel cells.  One of the reasons is that the presence of carbon monoxide (CO) in the reformatted fuel, even at a very small scale, decreases the fuel cell performance. The aim of this paper is to investigate the effect of CO in reformatted fuel on PEM fuel cell performance. For this purpose, a steady state, one-dimensional and non-isoth...

متن کامل

Parametric Study of Operation and Performance of a PEM Fuel Cell Using Numerical Method

Output characteristics of fuel cells are affected by a large number of parameters such as geometry, dimensions, construction materials and conditions of supplying fluids. In this paper a mathematical model followed by a two-dimensional numerical approach has been presented to study the fuel cell parametrically. Effect of oxygen concentration at gas diffusion layer entrance, temperature and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016